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Abstract
The Kaluza-Klein monopole is a well known object in both gravity and string theory, related by

T-duality to a “smeared” NS5-brane which retains the isometry around the duality circle. As the
true NS5-brane solution is localized at a point on the circle, duality implies that the Kaluza-Klein
monopole should show some corresponding behavior. In this paper, we express the Kaluza-Klein
monopole as a gauged linear sigma model in two dimensions and show that worldsheet instantons
give corrections to its geometry. These corrections can be understood as a localization in “winding
space” which could be probed by strings with winding charge around the circle.
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I. INTRODUCTION

It is well known that superstring theory compactified on a circle contains Kaluza-Klein
monopoles [1, 2], which have an isometry around the circle. T-duality in that direction
transforms them into H-monopoles [3, 4], which are understood in string theory as NS5-
branes [5, 6]. This relationship forms an important part of the duality web.

However, there are two serious gaps in this familiar story. The first is that NS5-branes
naturally correspond to the localized H-monopole geometry found in [5]. But that solution
breaks the isometry around the circle and has a throat behavior at short distances (at least
when the NS5-brane charge is greater than one). This is qualitatively very different from
the Kaluza-Klein monopole solution, and thus would seem to conflict with the basic premise
of T-duality that the physics of the dual solutions is the same.

On this basis, Gregory, Moore, and one of the authors [7] argued that the proper Kaluza-
Klein monopole solution in string theory should be modified. They suggested that classical
values for string winding states near the monopole core would lead to a “throat” that could
be probed by scattering winding strings. However, they did not find the corrected geometry
explicitly, and the mechanism generating the necessary corrections remained unknown.

The second gap in the story is that the natural T-dual of a Kaluza-Klein monopole
geometry is a smeared H-monopole solution which retains the S1 isometry. We know,
however, that one of the H-monopole’s moduli is its position on S1. There must therefore
be a localized solution, or else changing the S1 location would not be a true physical modulus
as it would not lead to a new point in the physical configuration space. This puzzle was
resolved by Tong [8], who demonstrated that worldsheet instantons in the smeared H-
monopole background correct the geometry to reproduce the localized solution of [5]. The
solution to this second problem provides the necessary tools to solve the first.

In this paper, we show that the unit charge Kaluza-Klein monopole receives similar
corrections from worldsheet instantons. As its topology does not admit holomorphic instan-
tons, we begin from an N = (4, 4) supersymmetric gauged linear sigma model and study
the “point-like instantons” described by Witten [9]. Although we are only able to find the
corrected solution in a limit, our results strongly suggest that the Kaluza-Klein monopole in
string theory is localized in “winding space” as expected from T-duality. Our perspective on
the corrections differs slightly from that of [7]: while they carry the same conserved charge
as string winding states, there is no direct identification between the two.

The structure of this paper is as follows. In section II we briefly review the relevant
monopole geometries. In section III we state the supersymmetric gauged linear sigma models
describing the Kaluza-Klein and H-monopoles and show that the former reduces to the
expected nonlinear sigma model in the low-energy limit. In section IV we identify worldsheet
instanton configurations in the gauged linear sigma model and determine their leading order
effect on the geometry. Finally, in section V we relate these results to the expected properties
of the solution and conclude.

II. REVIEW OF MONOPOLE GEOMETRIES

The usual Kaluza-Klein monopole metric is that of Taub-NUT space, with no excitation
of the antisymmetric tensor or dilaton. In our conventions,

ds2 = H(r) dr · dr +H(r)−1
(
dκ+ 1

2
ω · dr

)2
. (1)
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Here, r is a position in R3, ω is a vector in R3 satisfying ∇× ω = −2∇H(r) = −∇(1/r),
and κ has period 2π. The harmonic function H(r) is

H(r) =
1

g2
+

1

2r
,

making g the asymptotic radius of the κ circle (in string units).1 This solution approaches
flat space at the origin and has global topology R4: its local R3 × S1 structure is simply
the Hopf fibration of S1 over S2(×R+). After dimensional reduction on the S1, ω gives
the vector potential of a magnetic monopole for the Kaluza-Klein gauge field. In spherical
coordinates {r, ϑ, ϕ} on R3, one common gauge choice gives ωr = ωϑ = 0, ωϕ = 1− cosϑ.

In addition to its three collective coordinates corresponding to position in R3, the Kaluza-
Klein monopole has a fourth collective coordinate related to the antisymmetric 2-form
Bmn [10]. This dyonic coordinate β arises from the harmonic 2-form of Taub-NUT space,
and can be found as a large gauge transformation of Bmn:

B = β dΛ , for Λ =
1

g2H(r)

(
dκ+ 1

2
ω · dr

)
. (2)

Although it is pure gauge, this B is physically significant because Λ does not vanish at infinity.
If β is constant, B is a closed form and has no effect on the geometry, but (for instance) a
time-varying β carries string winding charge, which corresponds after dimensional reduction
to electric charge under Bm4 (where r4 ≡ κ).

The (smeared) H-monopole solution can be found from this by the usual Buscher rules for
T-duality [11]. Applying them to the Kaluza-Klein monopole (with β = 0) gives a solution
in terms of the dual coordinate r4 ≡ θ:

ds2 = H(r)
(
dr · dr + dθ2

)
, Bm4 = −ω/2 (m = 1, 2, 3) ,

with all other independent Bmn zero. (The dilaton becomes eΦ = H(r).) The physical
contribution of Bmn is the torsion T = −H = −dB, which can be written in terms of H(r):
Hmnp = εmnp

qH−1∂qH. Applying the Buscher rules to the general solution with β 6= 0
reduces to the same form after a coordinate transformation θ → θ−β/(g2H(r)) and a gauge
transformation of Bmn (with a gauge parameter that does vanish at infinity). Thus, up to
a coordinate transformation that is trivial at infinity, β simply corresponds to a shift in θ.

Finally, the localized H-monopole can be constructed from a periodic array of NS5-
branes [5]. The forms of the metric and torsion are the same as in the smeared case above,
but the harmonic function is modified:

H(r, θ) =
1

g2
+

1

2r

sinh r

cosh r − cos θ
=

1

g2
+

1

2r

∞∑
k=−∞

e−|k|r+ikθ . (3)

The Fourier-expanded form is directly related to the instanton sum. In these coordinates the
monopole is localized at θ = 0; more generally, we can introduce a constant offset (θ − θ0).

1 To compare with the more common conventions of [7], the radius is g = R/
√

α′, the coordinates are
rhere = rthere · R/α′ and κ = x5/R, the metric is ds2

here = −ds2
there/α′, and the harmonic function in the

metric there is U−1 = g2H = 1 + R/2rthere.
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III. SIGMA MODEL ACTIONS FOR MONOPOLES

To study these monopole configurations in string theory, our first step must be to identify
the appropriate worldsheet theories describing them. These geometries contain no holomor-
phic curves (at least for unit monopole charge), so we will consider worldsheet instanton
effects due to point-like instantons in gauged linear sigma models [9]. The appropriate
models have N = (4, 4) supersymmetry in two dimensions.

Our approach in this section generally follows that of Tong [8], although our conventions
and methods differ slightly. We introduce the T-dual monopole actions in N = (2, 2) super-
space after defining the necessary superfields. We then expand the actions in components
as will be necessary for the instanton calculation in section IV. To make contact with the
Kaluza-Klein geometry given above, we then take the low energy limit and show that it
reduces to the expected nonlinear sigma model. This limit will be used in interpreting the
results of the instanton calculation.

A. Superfield definitions

The gauged linear sigma model actions for the H-monopole and the Kaluza-Klein mono-
pole are constructed from N = (4, 4) supermultiplets in two dimensions. Each action in-
cludes a gauge multiplet and a charged hypermultiplet, but where the H-monopole also has
a twisted hypermultiplet the Kaluza-Klein monopole has a normal hypermultiplet instead.
For ease of computation, we decompose each of these N = (4, 4) supermultiplets into a pair
of N = (2, 2) superfields. (See [9] for a review of these models.)

We begin with the N = (4, 4) vector multiplet, which decomposes into an N = (2, 2)
chiral superfield Φ and vector superfield V . In terms of component fields (with derivative
terms suppressed), these are

Φ = φ+
√

2 θ+λ̃+ +
√

2 θ−λ̃− +
√

2 θ+θ−(D1 − iD2) + · · ·
V = θ+θ̄+A+ + θ−θ̄−A− −

√
2 θ−θ̄+σ −

√
2 θ+θ̄−σ†

− 2iθ+θ−
(
θ̄−λ̄− + θ̄+λ̄+

)
− 2iθ̄−θ̄+

(
θ+λ+ + θ−λ−

)
+ 2θ+θ−θ̄−θ̄+D3

Σ ≡ 1√
2
D̄+D−V = σ + i

√
2 θ+λ̄+ − i

√
2 θ̄−λ− +

√
2 θ+θ̄−(D3 − iF01) + · · · .

Here, the vector superfield is in Wess-Zumino gauge and we have defined A± ≡ A0 ± A1.
The gauge invariant twisted chiral superfield Σ allows a natural expression for the theta
angle and Fayet-Iliopoulos term and provides a convenient way of writing the gauge kinetic
term. Following [9], components of fermion doublets are labeled as λα = (λ−, λ+) and
λα = (λ−, λ+), so λ− = λ+ and λ+ = −λ−. As usual, gauge transformations are given by
V → V + i(Λ− Λ†) for an arbitrary chiral superfield Λ.

The charged hypermultiplet common to both monopole actions decomposes into two
chiral superfields Q and Q̃ with charges +1 and −1 under the U(1) gauge group, respectively.
Their component expansions are

Q = q +
√

2 θ+ψ+ +
√

2 θ−ψ− + 2θ+θ−F + · · ·
Q̃ = q̃ +

√
2 θ+ψ̃+ +

√
2 θ−ψ̃− + 2θ+θ−F̃ + · · · .
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The H-monopole action’s twisted hypermultiplet can be decomposed into a chiral super-
field Ψ and a twisted chiral superfield Θ. Their component expansions are

Ψ =
(r1 + ir2)√

2
+
√

2 θ+χ+ +
√

2 θ−χ− + 2θ+θ−G+ · · ·

Θ =
(r3 + iθ)√

2
− i
√

2 θ+ ¯̃χ+ − i
√

2 θ̄−χ̃− + 2θ+θ̄−G̃+ · · · .

Under T-duality, this twisted hypermultiplet is exchanged for the normal hypermultiplet of
the Kaluza-Klein monopole. The Ψ superfield is unchanged, but its partner is now a second
chiral superfield Γ whose component expansion is

g2Γ =
(−r3 + ig2γ)√

2
+ i
√

2 θ+ ¯̃χ+ + i
√

2 θ− ¯̃χ− + 2θ+θ−G̃′ + · · · . (4)

Some of the component fields listed here share their names with components of Θ; these
identifications are justified below.

B. Gauged linear sigma models and T-duality

1. The monopole actions in superspace

The gauged linear sigma model action corresponding to the H-monopole written in terms
of the above N = (2, 2) superfields is given by the sum of the following Lagrangian densities
(plus complex conjugates of the F and F̃ terms):

LD =

∫
d4θ

[
1

e2
(
−Σ†Σ + Φ†Φ

)
+

1

g2

(
−Θ†Θ + Ψ†Ψ

)
+Q†e2VQ+ Q̃†e−2V Q̃

]
LF =

∫
d2θ

(√
2 Q̃ΦQ− ΦΨ

)
LF̃ = −

∫
d2ϑ ΘΣ .

Here, d2θ ≡ −dθ+dθ−/2 and d2ϑ ≡ −dθ+dθ̄−/2 are the usual measures on chiral and twisted
chiral superspace, respectively. We begin from the H-monopole action in order to follow
the effects of LF̃ through T-duality. As shown below, this term leads to a topologically
significant total derivative of component fields after duality.

To obtain the corresponding superspace action for the Kaluza-Klein monopole, we find
the T-dual action in superspace following Roček and Verlinde [12]. It is first necessary to
write the action uniformly as an integral over full superspace by applying the identity∫

d2ϑ ΣΘ +

∫
d2ϑ̄ Σ†Θ† =

∫
d4θ
[√

2
(
Θ + Θ†)V ]− εµν∂µ(θAν) . (5)

We can then write the Θ-dependent part of the action in first order form, replacing Θ + Θ†

with a real superfield B together with a chiral superfield Lagrange multiplier Γ:∫
d4θ

[
− 1

g2
Θ†Θ−

√
2
(
Θ + Θ†)V ] =

∫
d4θ

[
− 1

2g2

(
Θ + Θ†)2 −√2

(
Θ + Θ†)V ]

=

∫
d4θ

[
− 1

2g2
B2 −

√
2BV −

(
Γ + Γ†

)
B

]
.
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The final equality can be proved by integrating out Γ (and its conjugate), which requires that
we rewrite the Γ term as an integral over chiral superspace only. Up to total derivatives,
2
∫
d2θ̄ is equivalent to −D̄+D̄−. Both of these derivatives annihilate Γ by definition, so

the Γ equation of motion is D̄+D̄−B = 0. The Γ† constraint is just the conjugate of this,
so we can write B = Θ + Θ† for a twisted chiral superfield Θ (for which, by definition,
D̄+Θ = D−Θ = 0). This combination Θ+Θ† has no undifferentiated imaginary scalar part,
so the only source for a constant offset in θ in the first order action is the total derivative
term from Eq. (5).

To find the T-dual action we instead integrate out B, which yields the equation of motion
B = −g2(Γ + Γ† +

√
2V ). This leaves us with the duality substitution∫

d4θ

[
− 1

g2
Θ†Θ−

√
2
(
Θ + Θ†)V ]→ ∫

d4θ
g2

2

(
Γ + Γ† +

√
2V
)2

.

The full superspace action for the Kaluza-Klein monopole is then constructed from

LD =

∫
d4θ

[
1

e2
(
−Σ†Σ + Φ†Φ

)
+
g2

2

(
Γ + Γ† +

√
2V
)2

+
1

g2
Ψ†Ψ +Q†e2VQ+ Q̃†e−2V Q̃

]
LF =

∫
d2θ

(√
2 Q̃ΦQ− ΦΨ

)
Ltop. = εµν∂µ(θAν) . (6)

In order for the action to remain gauge invariant, Γ must transform by a simple shift:
Γ → Γ− i

√
2 Λ. In the case of an “ordinary” gauge transformation Λ = λ ∈ R (the residual

freedom after fixing Wess-Zumino gauge), the shift affects only one component: γ → γ−2λ.
The total derivative term Ltop. will be topologically significant in the instanton calculation.

The component fields of Θ and Γ can be related to one another by equating the two
expressions for B found above: Θ+Θ† = B = −g2(Γ+Γ†+

√
2V ). This justifies the equality

between the Θ and Γ component fields r3 and χ̃± asserted in Eq. (4). The components θ and
γ are not directly related, but their derivatives are: ∂±θ/g = ∓g(∂±γ + A±). The relative
∓ is the usual sign change of the right-moving worldsheet coordinate under T-duality, and
the factors of g convert angles to arc lengths.

2. The monopole actions in components

When these superspace actions are expanded in components and the auxiliary fields are
eliminated, the results are almost identical. Below, we present the results for the Kaluza-
Klein monopole; the few changes required for the H-monopole are discussed in the text.

We divide the action into a sum of kinetic, scalar potential, “Yukawa,” and topological
terms:

S =
1

2π

∫
d2x (Lkin + Lpot + LYuk + Ltop.) .

The term Ltop. was defined in Eq. (6); it is absent from the H-monopole action. The
component form of the kinetic terms is:

Lkin =
1

e2

(1

2
F 2

01 − |∂µφ|2 − |∂µσ|2 + i(λ̄+∂−λ+ + ¯̃λ+∂−λ̃+ + λ̄−∂+λ− + ¯̃λ−∂+λ̃−)
)

+
1

g2

(
−1

2
|∂µr|2 −

g4

2
(∂µγ + Aµ)2 + i(χ̄+∂−χ+ + ¯̃χ+∂−χ̃+ + χ̄−∂+χ− + ¯̃χ−∂+χ̃−)

)
+
(
−|Dµq|2 − |Dµq̃|2 + i(ψ̄+D−ψ+ + ¯̃ψ+D−ψ̃+ + ψ̄−D+ψ− + ¯̃ψ−D+ψ̃−)

)
. (7)
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The worldsheet metric is flat and given by ηµν = ( −1 0
0 1 ). We have defined ∂± = ∂0 ± ∂1,

and the covariant derivative is defined as Dµq = ∂µq + iAµq and Dµq̃ = ∂µq̃ − iAµq̃ (and
similarly for other components from the same supermultiplet). To obtain the kinetic terms

of the H-monopole action, only one substitution is required: −g4

2
(∂µγ + Aµ)2 → −1

2
(∂µθ)

2.
After eliminating auxiliary fields, the scalar potential is:

Lpot = −e
2

2

(
|q|2 − |q̃|2 − r3

)2 − e2

2

∣∣2q̃q − (r1 + ir2
)∣∣2

−
(
|φ|2 + |σ|2

) (
g2 + 2|q|2 + 2|q̃|2

)
.

(8)

The H-monopole action also includes the term −θF01.
Finally, the “Yukawa” action (which also includes several two-fermion terms) is:

LYuk =
(
λ̃+χ− − λ+

¯̃χ− + λ̄+χ̃− − ¯̃λ+χ̄−

)
−
(
λ̃−χ+ − λ− ¯̃χ+ + λ̄−χ̃+ − ¯̃λ−χ̄+

)
+ i
√

2 q
(
λ̄+ψ̄− − λ̄−ψ̄+ + iλ̃+ψ̃− − iλ̃−ψ̃+

)
+
√

2 σ
(
ψ+ψ̄− − ψ̃+

¯̃ψ−

)
+ i
√

2 q†
(
λ+ψ− − λ−ψ+ − i¯̃λ+

¯̃ψ− + i¯̃λ−
¯̃ψ+

)
−
√

2σ†
(
ψ̄+ψ− − ¯̃ψ+ψ̃−

)
− i
√

2 q̃
(
λ̄+

¯̃ψ− − λ̄−
¯̃ψ+ − iλ̃+ψ− + iλ̃−ψ+

)
−
√

2 φ
(
ψ+ψ̃− + ψ̃+ψ−

)
− i
√

2 q̃†
(
λ+ψ̃− − λ−ψ̃+ + i¯̃λ+ψ̄− − i¯̃λ−ψ̄+

)
+
√

2φ†
(
ψ̄+

¯̃ψ− + ¯̃ψ+ψ̄−

)
.

The corresponding terms in the H-monopole action are identical.
Both actions are invariant under the R-symmetry group SU(2)×SO(4) = [SU(2)]3. The

component fields fall into R-multiplets, which we label by their structure under SU(2)V ×
SU(2)L× SU(2)R. We define the scalar R-multiplets as qi = (q, q̃†) (that is, a (2,1,1)) and
rm = (r1, r2, r3) (a (3,1,1)). θ and γ are R-singlets, and the vector multiplet scalars fall
into a (1,2,2) that obeys a reality condition. The fermions also fall into R-multiplets: a
(1,2,1) and a (1,1,2) for the ψs, real multiplets (2, 2̄,1) and (2,1, 2̄) for the χs, and real
multiplets (2,2,1) and (2,1,2) for the λs.

Finally, a quadratic combination of the χs into a (3,1,1) multiplet arises in several places:

(χχ)m
± ≡

(
i (χ±χ̃± + χ̄± ¯̃χ±) , (χ±χ̃± − χ̄± ¯̃χ±) , (χ̄±χ± + ¯̃χ±χ̃±)

)
. (9)

C. Low energy limit of the Kaluza-Klein monopole action

1. The low energy limit in superspace

Nonlinear sigma models for the H-monopole and Kaluza-Klein monopole can be found as
the low energy limits of these gauged linear sigma models, which can be taken in two ways.
The first is based on the component action as given above. In our conventions, dimensional
analysis shows that the only dimensionful parameter in this action is the gauge coupling e.
The low energy limit is thus e2 → ∞, so the gauge kinetic terms vanish and both of the
q–r terms in the scalar potential must vanish to ensure finite energy. The vector multiplet
components become auxiliary fields and must be integrated out, leaving an action which can
be written in terms of twisted hypermultiplet fields alone (after applying the constraints to
eliminate the hypermultiplet fields). This is essentially the approach taken by Tong.
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The second approach, which we will follow, is to take the e2 → ∞ limit while still in
the superspace formalism. The kinetic terms for V (written in terms of Σ) and Φ vanish
in Eq. (6), so both can be treated as auxiliary superfields and integrated out directly. The
superfield Φ appears only as a Lagrange multiplier in LF . The vector superfield is somewhat
more subtle, as we must deal with the issue of gauge fixing before integrating it out. We
first restrict to Wess-Zumino gauge, which fixes all of the gauge freedom except the ordinary
gauge transformations of the component Aµ. The gauge choice for this residual symmetry is
less crucial; when it is necessary to make an explicit choice, we will require that q be purely
negative imaginary (q = −ip for real p > 0).

The vector multiplet equations of motion resulting from this procedure are

Ψ =
√

2 Q̃Q and
g2

√
2

(
Γ + Γ†

)
= −Q†e2VQ+ Q̃†e−2V Q̃− g2V . (10)

It can be verified that these constraints contain precisely the same information as the vacuum
equations and auxiliary field equations of motion in the component formalism.

When we do go to components, we eventually want to express the full action in terms of
the twisted hypermultiplet fields, but as an intermediate step, we can (partially) apply the
constraints directly to the Kaluza-Klein monopole action in superspace:

L =

∫
d4θ

[
g2

2

(
Γ + Γ† +

√
2V
)2

+
1

g2
Ψ†Ψ +Q†e2VQ+ Q̃†e−2V Q̃

]
=

∫
d4θ

[
g2Γ†Γ +

√
2 g2V

(
Γ + Γ†

)
+ g2V 2 +

1

g2
Ψ†Ψ +Q†e2VQ+ Q̃†e−2V Q̃

]
=

∫
d4θ

[
g2Γ†Γ− g2V 2 +

1

g2
Ψ†Ψ +

(
1− 2V 2

) (
Q†Q+ Q̃†Q̃

)]
.

(11)

In the last line, we have used our choice of Wess-Zumino gauge to expand the exponentials.
The total derivative term Ltop. is still present as well, but is not relevant to these manipu-
lations in superspace. Completely eliminating the Q and V superfields at this point would
be very difficult due to the form of the constraints, so the final constraint substitutions will
be carried out at the component level.

2. The low energy limit in components

The nonlinear sigma model for the Kaluza-Klein monopole is found from this result by
expanding Eq. (11) in components and then applying the constraints from Eq. (10). The
constraints used to eliminate the Q and Q̃ components in favor of those from Ψ and Γ are

r1 + ir2 = 2qq̃ χ± =
√

2
(
q̃ψ± + qψ̃±

)
r3 = |q|2 − |q̃|2 χ̃± = i

√
2
(
q̃ ¯̃ψ± − qψ̄±

)
.

(12)

These same relationships are found in the H-monopole case. It is also useful to express q
and q̃ in terms of the rm, but doing so is complicated by the fact that together, q and q̃ have
four real degrees of freedom while rm has only three. We choose to treat the phase of q as
the fourth degree of freedom, so

q = − i√
2
e−iα

√
r + r3 , q̃ =

i√
2
eiα r

1 + ir2

√
r + r3

. (13)
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This choice of α is convenient when we impose our gauge condition: q = −ip (p > 0)
corresponds to α = 0. The effect of an ordinary gauge transformation qi → e−2iλqi is
α→ α+2λ; r remains gauge invariant. This leads to a natural gauge invariant combination
of real scalars

κ ≡ γ + α .

This new scalar κ is a good choice for the coordinate r4 of the Kaluza-Klein monopole:
gauge variant coordinate fields have more complicated supersymmetry transformations.

The constraints also contain information on the auxiliary fields. The constraint involving
A± is the most notable of these:

A± =
1

g2 + 2r

(
−g2∂±γ + rω · ∂±r + 2r∂±α+ 2(ψ̄±ψ± − ¯̃ψ±ψ̃±)

)
=

1

g2H

(
∂±κ+

1

2
ω · ∂±r +

1

r
(ψ̄±ψ± − ¯̃ψ±ψ̃±)

)
− ∂±γ .

(14)

This equation uses the (smeared) harmonic function H = H(r) introduced in section II and
the target space vector ω defined (implicitly) by:

i
(
q†∂µq − q∂µq

† − q̃†∂µq̃ + q̃∂µq̃
†) =

r1∂µr
2 − r2∂µr

1

r + r3
+ 2r∂µα ≡ rω · ∂µr + 2r∂µα . (15)

In the first equality we have used Eq. (13), but the final expression holds for redefinitions
of α as described below. The explicit form of ω shown here is simply the Cartesian form of
the monopole gauge field mentioned in section II: ωr = ωϑ = 0, ωϕ = 1 − cosϑ. While ω
does not naturally change under gauge transformations, α does: δ(2r∂µα) = 4r∇λ · ∂µr. If
we redefine α and ω so that α = 0 again holds, ω changes by δωµ = 4∇µλ, a target space
gauge transformation.

We can at last write the low energy action in components. After applying the constraints,
the action finally reads as follows:

L = −1

2
H|∂µr|2 −

1

2
H−1

(
∂µκ+

1

2
ω · ∂µr

)2

+ iH
(
χ̄+∂−χ+ + ¯̃χ+∂−χ̃+ + χ̄−∂+χ− + ¯̃χ−∂+χ̃−

)
− 1

4H|r|3

(
∂−κ+

1

2
ω · ∂−r

)
rm(χχ)m

+ −
1

4H|r|3

(
∂+κ+

1

2
ω · ∂+r

)
rm(χχ)m

−

+
1

4|r|3
εmnp(χχ)m

+ rn∂−r
p +

1

4|r|3
εmnp(χχ)m

− r
n∂+r

p

− 3

4g2H|r|5
rm(χχ)m

+ rn(χχ)n
− +

1

4g2H|r|3
(χχ)m

+ (χχ)m
− .

(16)

Here, H is the harmonic function H(r) defined in section II, and the scalar fields γ and α
have everywhere combined into κ. The vector combination (χχ)m

± was defined in Eq. (9).
In deriving this action, we have dropped total derivative terms, but the term Ltop. remains

significant:
Ltop. = εµν∂µ(θAν) = θεµν∂µAν + εµν∂µθAν , (17)

where Aν should be replaced by its equation of motion in Eq. (14). The bosonic part of
∂µγ + Aµ is precisely the large gauge transformation 1-form Λ introduced in section II, so
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the first of these terms has the form of the dyonic B-field of Taub-NUT: B = −θdΛ. (The
identification of this term in the action as a B-field follows from Eq. (22) below.) Thus,
although θ loses its geometrical meaning after T-duality, it is still significant as the dyonic
coordinate of the Kaluza-Klein monopole.

The second term is harder to interpret, as the action does not treat θ as a dynamical
field; if θ is constant, this term vanishes. It would be interesting to find an action which
correctly encoded independent dynamics for a geometrical coordinate (κ, here) and its dual
coordinate (θ), but no such formalism is currently known.

3. Real superfields and the nonlinear sigma model action

To find the geometric meaning of these results, we can rewrite the action as a supersym-
metric nonlinear sigma model in terms of real N = (1, 1) superfields whose scalar parts are
the coordinate fields. We use conventions in which the N = (1, 1) supercoordinates are pure
imaginary, θ̄α = −θα, so the component expansion of a real superfield R = R† is

R = A+
√

2 θ+Ω+ +
√

2 θ−Ω− + iθ+θ−F .

Here, A and F are real scalars and Ω is a real spinor.
To extract real superfields from our chiral superfields Ψ and Γ, we simply take their real

and imaginary parts and impose the pure imaginary condition on θα (essentially setting the
real part of our N = (2, 2) θαs to zero). So, for instance, Ψ1 ≡

(
Ψ + Ψ†) /√2 = r1 + · · ·

and −g2Γ1 ≡ −g2
(
Γ + Γ†

)
/
√

2 = r3 + · · · . From these coordinate superfields, we can read
off the real fermions Ωm naturally associated to each of the coordinates rm and to γ:

Ωm
± =

(
χ± + χ̄±√

2
, −iχ± − χ̄±√

2
, i

χ̃± − ¯̃χ±√
2

)
, Ωγ

± =
χ̃± + ¯̃χ±√

2 g2
. (18)

(In the H-monopole case, the Ωm
± are identical because the coordinates rm are not affected

by T-duality, but Ωθ
± = ∓g2Ωγ

± = ∓(χ̃± + ¯̃χ±)/
√

2 .) The vector combination (χχ)m
± can be

expressed in terms of these real fermion fields:

(χχ)m
± = i

(
Ω2
±Ω3

± + g2Ω1
±Ωγ

± , Ω3
±Ω1

± + g2Ω2
±Ωγ

± , Ω1
±Ω2

± + g2Ω3
±Ωγ

±

)
. (19)

The final step required before we can write the action in real superfield form is to find the
appropriate fermionic partner for the gauge invariant coordinate κ = γ+α. We have already
found γ’s partner Ωγ

± above, but finding the fermionic partner for α is more subtle. It can
be derived (up to an unimportant constant offset) by taking the supersymmetry variation
of Eq. (15) and solving for δξα, giving the result

δξα =
√

2 ξα 1

2r

(
g2Ωγ

α − rω ·Ωα

)
.

This combines neatly with δξγ =
√

2 ξαΩγ
α to yield δξκ ≡

√
2 ξαΩ4

α. To substitute Ω4
α for Ωγ

α

in the expressions above, we can solve for the latter:

g2Ωγ
α = H−1

(
Ω4

α +
1

2
ω ·Ωα

)
. (20)
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When the real fermions are substituted in the kinetic terms of Eq. (16), the result is

iH
(
χ̄±∂∓χ± + ¯̃χ±∂∓χ̃±

)
=

i

2
H (Ω± · ∂∓Ω±) +

i

2
H−1

(
Ω4
± +

1

2
ω ·Ω±

)(
∂∓Ω4

± +
1

2
ω · ∂∓Ω±

)
+O(ΩΩ∂r) . (21)

The final term results from ∂∓ω and contributes to the connection terms in the nonlinear
sigma model action, which we will not compute in detail.

In components, the general supersymmetric nonlinear sigma model action is [13]:

S =
1

2π

∫
d2x

[
−1

2
gmn∂µφ

m∂µφn − 1

2
Bmnε

µν∂µφ
m∂νφ

n

+
i

2
gmnΩm

−D+Ωn
− +

i

2
gmnΩm

+D−Ωn
+ +

1

4
RmnpqΩ

m
+Ωn

+Ωp
−Ωq

−

]
. (22)

Here, D± ≡ D±
0 ±D±

1 , where D±
µ is the covariant derivative defined with positive or negative

torsion, respectively. Rmnpq is the Riemann tensor defined with positive torsion. (Our
conventions differ somewhat from those of [13], including the overall normalization 1/2π.)

Comparing this to our component action in Eq. (16) with the substitutions from Eqs. (19)
and (21), we see that the form of the kinetic terms agrees and that the metric is precisely
that for the Kaluza-Klein monopole given in Eq. (1). The Riemann tensor components
extracted from the 4-fermion terms agree with those computed from the metric as well.

IV. WORLDSHEET INSTANTON CORRECTIONS

Worldsheet instantons in the H-monopole gauged linear sigma model have been analyzed
by Tong [8]. As shown above, the gauged linear sigma model for the T-dual Kaluza-Klein
monopole is very similar, so we will closely follow Tong’s approach in this section. When
the arguments and calculations are identical in both cases (up to differences in conventions),
we will simply cite his results.

In carrying out the calculation we will use the language of classical vacua with fixed
values of the moduli. Of course, strictly speaking, there is no such thing in 1+1 dimensions
as there is no symmetry breaking by the Mermin-Wagner-Coleman theorem [14, 15]. As in
previous treatments, we work in the framework of the Born-Oppenheimer approximation,
where fast or high-momentum modes are integrated out to give a low-energy description in
terms of a quantum corrected moduli space.

A. The classical action for instanton sectors

In gauged linear sigma models, worldsheet instantons correspond to vortices of the gauge
field. We count these by

k = − 1

2π

∫
F12 .

These instantons include not only any holomorphic worldsheet embeddings apparent from
the theories’ low energy nonlinear sigma model limits but also what Witten [9] calls “point-
like instantons”. As neither the flat target space of the H-monopole nor the Taub-NUT
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target space of a single Kaluza-Klein monopole contain holomorphic two-cycles, it is these
point-like instantons that are relevant here.

The first step in finding the instanton action is to identify a classical solution to represent
each instanton sector k 6= 0. Our starting point is the bosonic component form of the
gauged linear sigma model action given in Eqs. (7)–(8). We must also consider the effect of
Ltop. = εµν∂µ(θAν) = −θF01 + εµν∂µθAν . The first term is topologically significant, and as
discussed below Eq. (17) the impact of the second term is unclear because the action does
not treat θ as a dynamical field. In the H-monopole case, θ is constant in the g → 0 limit
taken below, and we will make that assumption here.

To begin the calculation, we choose a specific classical vacuum for our instanton solution
to approach at large distance. All vacua must satisfy φ = σ = 0, and we can use the SU(2)
R-symmetry to set q̃ = 0 without loss of generality. The vacuum conditions in this case are
r1 = r2 = 0 and |q|2 = r3 ≡ ζ, where we define ζ as a constant parameterizing the vacuum.

Of course, the Mermin-Wagner-Coleman theorem implies that ζ = r3 cannot be a true
modulus, and indeed there are no finite action solutions of the equations of motion satis-
fying these vortex boundary conditions. This difficulty can be overcome by an analogue
of the “constrained instantons” procedure [16]: we perform our calculations in a limit of
the parameters of the theory in which appropriate BPS solutions exist, and then rely on
supersymmetry to protect the results as we return to general parameter values. For both
the H-monopole and Kaluza-Klein monopole, an appropriate limit is to take the Taub-NUT
radius g → 0. This procedure is justified by the final result of the calculation, in which
instanton corrections are finite even in the strict g → 0 limit.

The next step is to identify the significant bosonic variations about this chosen vacuum.
Only variations that could affect the gauge field are relevant; others will merely increase the
total Euclidean action. We can exclude variations in φ and σ from the start, and variations
in q̃, r1, and r2 are related by R-symmetry to variations of q and r3 and will not reduce the
action. After Wick rotating to Euclidean space (with x2 ≡ ix0) the remaining action is

SE =
i

2π

∫
d2x

[
F 2

12

2e2
+

1

2g2

(
∂µr

3
)2

+
g2

2
(∂µγ + Aµ)2 + |Dµq|2 +

e2

2

(
|q|2 − r3

)2
+ iθF12

]
.

When g → 0, the γ kinetic term drops out of the action entirely. On the other hand,
variations of r3 away from ζ are frozen out when g → 0, even when |q|2 6= ζ.

Thus, the relevant action for the instanton calculation is

S =
i

2π

∫
d2x

[
1

2e2
F 2

12 + |Dµq|2 +
e2

2

(
|q|2 − ζ

)2
+ iθF12

]
.

This is precisely the same action as in the H-monopole case: the abelian Higgs model action
at critical coupling plus a θ term. Completing the square gives

S =
i

2π

∫
d2x

[
1

2e2
(
F12 ∓ e2(|q|2 − ζ)

)2
+ |D1q ± iD2q|2 + (∓ζ + iθ)F12

]
.

The first two terms are strictly non-negative, so the minimal action occurs when they are
zero. This provides a set of first order Bogomol’nyi equations for the vortex solution:

F12 = ±e2(|q|2 − ζ) and Dz̄q = 0 (or lower sign: Dzq = 0) .

12



When integrated, the third term is proportional to the instanton number k. Choosing the ±
sign to give the tightest lower bound on the real part of the action (the top sign is preferred
when k > 0), we find that the action when the Bogomol’nyi equations are satisfied is

Sk = |k|ζ − ikθ , (23)

where we have defined Sk = −iS in the given instanton sector (so the path integral factor
eiS becomes e−Sk).

B. The instanton sum and measure

The sum over instanton configurations has two parts: a discrete sum over sectors k (each

represented by a solution {A(k)
µ , q(k)} of the Bogomol’nyi equations) and an integral over

zero modes. (Tong argues that the contributions of bosonic and fermionic non-zero modes
cancel in the present case.) To evaluate this integral, we must find the proper measure by
identifying the bosonic and fermionic zero modes of the solution. We must also identify
any corrections to the instanton action that depend on the zero modes and find the long
distance behavior of the zero mode solutions themselves. As the action here matches the
H-monopole case, this section simply summarizes the results of [8] except as noted.

The first step is to identify the proper measure for the bosonic zero mode integral. We be-
gin from the linearized Bogomol’nyi equations, which together with a gauge fixing condition
can be written as a bosonic Dirac equation. For k > 0,

∆

(
δAz̄

δq

)
= 0 , where ∆ ≡

(
2i
e2∂ q†

−q iD

)
.

Erick Weinberg [17, 18] used index theory to show that these equations have 2|k| normaliz-
able, linearly independent zero mode solutions. These form the multi-vortex moduli space
Mk, which decomposes as Mk = R2 × M̃k. The coordinates Xµ on R2 are Goldstone
modes encoding the center of mass of the vortices; for k > 0 and µ = 1, 2 the corresponding
linearized fields after gauge fixing are

{δµAν = Fµν , δµq = Dµq} . (24)

The coordinates Y p on M̃k (p = 1, . . . , 2(k − 1)) encode the relative vortex positions.
The metric on Mk is defined by the overlap of the zero modes [19]; the proper overlap

integral emerges from a standard gauge-fixed zero mode calculation [20]. This can be com-
puted explicitly for the Goldstone modes above, for which we find gµν = ζ|k|δµν . The metric

g̃pq on M̃k remains unknown for any |k| > 1. The bosonic zero mode integral is

∫
dµB =

∫
d2X

2(|k|−1)∏
p=1

dY p

√
det g

(2π)|k|
=
ζ|k|
2π

∫
d2X

2(|k|−1)∏
p=1

dY p

√
det g̃

(2π)|k|−1
. (25)

Next, we require the corresponding measure for the fermionic zero modes. There are 4k
of these, related to the 2k bosonic zero modes by the unbroken supersymmetries. The su-
perpartners of the Xµ are Goldstino modes from the broken supersymmetries. Two of these
result from the breaking of our explicit N = (2, 2) supersymmetry and are parameterized by
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the Grassmann variables α1 and α2, while the other two are related to these by R-symmetry
and are parameterized by α̃1 and α̃2. Explicitly, these are pairs of fermion fields which are
zero modes of the operator ∆ or its complex conjugate ∆∗ (neither ∆† nor ∆T have any zero
modes). For k > 0:

i√
2
λ̄+ = i

2
α1F12 , − i√

2
λ− = − i

2
α2F12 , − 1√

2
λ̃+ = i

2
α̃1F12 , − 1√

2

¯̃λ− = − i
2
α̃2F12

ψ− = α1Dq , ψ̄+ = α2Dq† , ¯̃ψ− = α̃1Dq , ψ̃+ = α̃2Dq†
. (26)

These results differ somewhat from those given in [8] for this action, and we show that our

ψ and ψ̃ zero modes lead to a simpler expression for the four-fermion correlation function
when |k| > 1. As in the bosonic case, no explicit form is known for the fermion zero mode

partners of the relative coordinates Y p; we parameterize them by βp and β̃p.
The overlap integrals that define the fermionic moduli space metric g arise from a zero

mode calculation analogous to the bosonic case. The result is the same apart from a shift
in normalization, which can be thought of as a change of zero mode basis in Eq. (24) from
µ = 1, 2 to µ = z, z̄ to match Eq. (26). The measure for the fermion zero mode integral is∫

dµF =

∫
d2α d2α̃

2(|k|−1)∏
p=1

dβp dβ̃p 1

det g
=

(
2

ζ|k|

)2 ∫
d2α d2α̃

2(|k|−1)∏
p=1

dβp dβ̃p 1

det g̃
. (27)

While the zero modes found above each solve the linearized equations of motion, they
may interfere with each other when integrated up to solutions of the full system. This results
in a four-fermion contribution to the action by relative fermion zero modes [21, 22]:

S4-fermi =
1

4
R̃pqrsβ

pβqβ̃rβ̃s . (28)

Here, R̃ is the Riemann tensor on the relative vortex moduli space M̃k.
Finally, we need to know the explicit long-distance limit of the Goldstino mode solutions.

The long-distance limit of the bosonic field q was found in [23]. Using polar coordinates
on the Euclidean worldsheet, z = ρeiϑ, the solution for a k-vortex solution centered at the
origin as ρ→∞ is

|q|2 → ζ

(
1− lk(Y

p, ϑ)

√
2πL

ρ
e−ρ/L

)
,

where the characteristic vortex length scale is L = (2e2ζ)−1/2. The functions lk(Y
p, ϑ) are

unknown except for the numerical constant l1 = 81/4 [8]. The phase of q in the vortex solution
is important: in our conventions, q = |q|eikϑ. We also need to know the corresponding ρ→∞
limit of the gauge field, Az̄ → i

2
eiϑ(−k/ρ + lk(Y

p, ϑ)
√
π/2Lρ e−ρ/L), which together with

this q satisfies Dq = 0 to the given order in ρ.
From these results we can find the long-distance behavior of the Goldstino mode ψ−; the

others will have either the same profile or its conjugate. For k > 0,

ψ− = α1Dq → α1

√
ζ lk(Y

p, ϑ) ei(k−1)ϑ

√
π

2Lρ
e−ρ/L . (29)

The final square root and exponential will be denoted SF (X) below, as they give the asymp-
totic behavior of the diagonal component of a Dirac fermion propagator with mass 1/L.
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C. Instanton corrections to the geometry

We can now assemble these results to compute the instanton contribution to the ψ4

correlation function. This will correspond to a modified four-fermion vertex for ψ in the
low energy effective action. As these modifications must still be of the geometric form
in Eq. (22), they can be interpreted as correcting the Riemann curvature tensor for the
monopole geometry. The four insertions must be able to absorb all four fermionic zero mode
integrals, so the only non-vanishing set of insertions in the k-instanton sector when k > 0 is

G
(k)
4 (x1, x2, x3, x4) =

〈
ψ̄+(x1)ψ−(x2)ψ̃+(x3)

¯̃ψ−(x4)
〉∣∣∣

k-instanton

=

∫
dµBdµF

[
ψ̄+(x1)ψ−(x2)ψ̃+(x3)

¯̃ψ−(x4)e
−Sk−S4-fermi

]
.

If k < 0, the conjugate holds. The components of this expression can be found in Eqs. (23),
(25), (27), (28), and (29), and together they give

G
(k)
4 (x1, x2, x3, x4) =

1

(2π)d/2

2ζ

π|k|
e−|k|ζ+ikθ

×
∫
d2X

d∏
p=1

(
dY pdβpdβ̃p

) l4k(Y p, ϑ)√
det g̃

e−
1
4
R̃pqrsβpβqβ̃rβ̃s

4∏
i=1

SF (X − xi) .

Here, d = 2(|k| − 1) is the dimension of the relative moduli space. The worldsheet position
appears here only in the propagator terms (which we trust only when the |X−xi| are large)
and in the ϑ dependence of l4k(Y

p, ϑ), which characterize the vortex solution falloff at large
distance. We expand any such dependence on ϑ as a Taylor series and proceed using only
the term without higher derivative corrections: the ϑ-averaged value of l4k(Y

p, ϑ). We can

then separate out all terms involving the relative moduli space into a function ν(M̃k):

G
(k)
4 (x1, x2, x3, x4) =

2ζ

π|k|
e−|k|ζ+ikθν(M̃k)

∫
d2X

4∏
i=1

SF (X − xi) .

Explicitly, the function ν(M̃k) is

ν(M̃k) =
1

(2π)d/2

∫ [ d∏
p=1

(
dY pdβpdβ̃p

) e− 1
4
R̃pqrsβpβqβ̃rβ̃s

√
det g̃

1

2π

∫
dϑ l4k(Y

p, ϑ)

]

=
1

(−8π)d/2(d/2)!

∫ d∏
p=1

dY p
√

det g̃ εp1p2...pdεq1q2...qdR̃p1p2q1q2 · · · R̃pd−1pdqd−1qd

× 1

2π

∫
dϑ l4k(Y

p, ϑ) .

Note that ε··· is the usual contravariant volume element whose non-zero components have
magnitude 1/

√
det g̃. For |k| = 1 no calculation is necessary: ν = l41. For higher |k|, this

expression differs from the same result in [8]: the phases of the four fermion zero modes
cancel out, so there is no exponential of iϑ weighting the exponential falloff function. Thus,
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this is simply the integral of the Euler form over the k-vortex moduli space, weighted by the
average exponential falloff.

The final modification to the four-fermion term in the low energy effective action is found

from the sum over instanton sectors, −
∑

k G
(k)
4 (the minus sign appears after Wick rotating

back to a Lorentzian worldsheet). Restoring r in place of ζ, we obtain (up to a possible
unimportant numerical factor)

δLeff = −
∞∑

k=1

2r

π|k|
ν(M̃k)e

−kr
[
eikθψ̄+ψ−ψ̃+

¯̃ψ− + e−ikθψ̄−ψ+ψ̃−
¯̃ψ+

]
= −

∞∑
k=1

1

2π|k|r
ν(M̃k)e

−kr
[
eikθχ̃+

¯̃χ−χ+χ̄− + e−ikθχ̃− ¯̃χ+χ−χ̄+

]
= −

∞∑
k=1

1

8π|k|r
ν(M̃k)e

−kr
[

eikθ (Ω1
+ + iΩ2

+)
(
Ω3

+ + iH−1(Ω4
+ + 1

2
ω ·Ω+)

)
× (Ω1

− − iΩ2
−)
(
Ω3
− − iH−1(Ω4

− + 1
2
ω ·Ω−)

)
+ e−ikθ(Ω1

+ − iΩ2
+)
(
Ω3

+ − iH−1(Ω4
+ + 1

2
ω ·Ω+)

)
× (Ω1

− + iΩ2
−)
(
Ω3
− + iH−1(Ω4

− + 1
2
ω ·Ω−)

)]
g→0−−→ −

∞∑
k=1

1

8π|k|r
ν(M̃k)e

−kr
[

eikθ (Ω1
+ + iΩ2

+)Ω3
+(Ω1

− − iΩ2
−)Ω3

−

+ e−ikθ(Ω1
+ − iΩ2

+)Ω3
+(Ω1

− + iΩ2
−)Ω3

−

]
.

As this is part of the low energy action, we have used Eq. (12) and our vacuum choice q̃ = 0
in deriving the second line and Eqs. (18) and (20) to find the third. In taking the final limit,
we have dropped terms involving H−1 ∝ g2 as our calculation may have neglected terms of
this same order. By comparison with Eq. (22) (and after accounting for the symmetries of
the Riemann tensor) we can see that the net coefficient of Ωm

+Ωn
+Ωp

−Ωq
− here is δRmnpq/(2π).

This result can be extended to r1, r2 6= 0 by R-symmetry (corresponding to rotations
in target space), but by construction it will hold only in a particular large distance limit.
We have kept only the leading term at large r for each instanton sector, but we sum over
higher |k| modes despite their exponential suppression. Treating the small quantities 1/r
and e−r independently in this way is physically reasonable because the exponential terms
have a distinct origin as higher instanton sectors.

For the terms which survive the final g → 0 limit, this result for δL is identical to the
H-monopole case: as noted previously, the low energy component constraints in Eq. (12)
and the real scalar superpartners Ω1,2,3

± are the same for both monopole solutions. Thus, the
leading corrections to the components of the Kaluza-Klein monopole Riemann tensor with
indices 1, 2, and 3 must be the same as those for the localized H-monopole.

To leading order in 1/r, it can be verified that the Riemann tensor with torsion is

Rmnpq = −1

2
(∂m∂pgnq + ∂n∂qgmp − ∂m∂qgnp − ∂n∂pgmq)−

1

2
(∂mTnpq − ∂nTmpq) .

This assumes that both Γm
pq and Tm

pq fall off at least as 1/r, which does hold in our case.
Applying these formulas to the localized H-monopole geometry given in section II, we can
(for instance) find the curvature corrections to leading order in 1/r evaluated at r1 = r2 = 0
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for comparison to the instanton result above:

δR1313 = δR2323 = − 1

4r

∞∑
k=1

k2e−kr(eikθ + e−ikθ) = − 1

2r

∞∑
k=1

k2e−kr cos(kθ)

δR1323 = −δR2313 =
i

4r

∞∑
k=1

k2e−kr(eikθ − e−ikθ) = − 1

2r

∞∑
k=1

k2e−kr sin(kθ) .

Naturally, we need not limit ourselves to r1 = r2 = 0 in general. The physical meaning
of these corrections is different in the two cases: in the Kaluza-Klein monopole, θ is now
the dyonic coordinate rather than a part of the geometry. In interpreting these results, it
is useful to recall that Rpqmn = Rmnpq|T→−T whenever the torsion is a closed form (which
always holds in string theory, where T = −dB). This allows us to recognize that the terms
in the first line must come entirely from corrections to the metric while the terms in the
second line must come from an instanton-induced torsion.

While many geometries would have this same limit at large distance, the connection to
the localized H-monopole’s Riemann tensor corrections suggests that the metric corrections
are the same:

δg11 = δg22 = δg33 =
1

2r

∞∑
k=1

e−kr
(
eikθ + e−ikθ

)
. (30)

This corresponds to a correction to the harmonic function H in those metric components to
the form in Eq. (3):

H =
1

g2
+

1

2r

∞∑
k=−∞

e−|k|r+ikθ =
1

g2
+

1

2r

sinh r

cosh r − cos θ
.

It seems likely that in the full corrected solution (beyond our g → 0 limit), the harmonic
function is modified in this way in all components of the Kaluza-Klein monopole metric.
Whether there are additional corrections is unclear.

The instanton corrections also generate a torsion, in contrast to the usual Kaluza-Klein
monopole solution. The only component that is non-zero to first order in 1/r in the g → 0
limit is

T123 = −H123 = −1

r

∞∑
k=1

ke−kr sin(kθ) . (31)

This may be written in terms of the localized harmonic function H(r, θ) as H123 = ∂θH.

V. INTERPRETATION AND CONCLUSIONS

A. Winding space localization of the Kaluza-Klein monopole

To understand these corrections, we must return to the conjecture of [7] that the proper
Kaluza-Klein monopole in string theory should have some sort of “throat” behavior, just as
the NS5-brane does. (Strictly speaking, a throat is only present for higher monopole charge,
but there are hints of it even in the poorly understood unit charge case.) In particular,
that paper suggested that just as the H-monopole throat can be probed by strings with
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momentum along θ, the Kaluza-Klein monopole throat could be probed by strings winding
around κ. Meanwhile, the geometrical isometry along κ remains unbroken.

As part of that work, [7] studied the behavior of winding strings in the Kaluza-Klein
dyon geometry. That analysis showed that although strings can unwind from the κ circle
in various ways, a generalization of the winding charge remains conserved. Each change
in string winding number is offset by a finite shift in the “velocity” β̇(t), where β(t) is the
dyonic coordinate introduced in Eq. (2). Intuitively, β is the coordinate on “winding space”,
and string winding charge is equivalent to momentum in β.

As seen in Eq. (17), after T-duality from theH-monopole the role of this dyonic coordinate
is played by θ: “momentum space” has become “winding space”. The corrections found
above give strong evidence that the conjectured localization and throat behavior do appear.
The modified harmonic function H(r, θ) has the same form that described a throat in the
H-monopole, but it now appears only for a special value of the winding space coordinate θ
rather than at a special point around the geometrical circle. And as expected from duality,
the resulting torsion provides a mechanism for this structure to couple to winding strings.

Our interpretation of the corrections to the Kaluza-Klein monopole solution differs some-
what from that of [7]. That paper viewed this winding space localization as a coherent
state of classical string winding modes, in analogy with an interpretation of the localized
H-monopole as a coherent state of string momentum modes. Intuitively, this picture is ex-
actly right: the localized monopole solutions can be expanded in Fourier modes that carry
the correct conserved charges. However, the classical solutions for strings with momentum
and winding are known, and superpositions of those solutions with the weights predicted
by [7] do not give the proper correction terms on either side of T-duality.

We expect this monopole to leave some supersymmetry unbroken just as the NS5-brane
does, but at first this seems impossible. One of the conditions for unbroken supersymmetry
is that the dilatino variation vanish:(

γm∂mΦ− 1

6
γmnpHmnp

)
ξ

?
= 0 .

For non-trivial solutions ξ to exist, the γ matrices must factor out to leave a projection
operator 1 ± γ5. This is possible only if the coefficients of γm and γmγ5 are equal in
magnitude for each m. In particular, for m = 4 this condition requires |∂4Φ| = |H123| (with
tangent space indices). As we have found that H123 6= 0, this holds only if ∂4Φ 6= 0, but we
have seen no physics that would break the κ isometry. (Changing from curved to tangent
space indices does not solve the problem.)

The resolution to this puzzle is that the usual supergravity approximation is only expected
to hold when the radius g of the κ circle is large and momentum states are light. Because
we have performed the instanton calculation in the limit of small g, the proper light degrees
of freedom are instead the winding states and a different low-energy theory must apply.
T-duality suggests that it should formally agree with the supergravity description of the
H-monopole at large radius, involving the dyonic coordinate θ rather than the geometrical
coordinate κ. In particular, it seems likely that the relevant part of the equation for unbroken
supersymmetry in this case will be(

γθ∂θΦ− γ123H123 + · · ·
)
ξ = 0 . (32)

Here, γθ denotes the matrix γ4 from the H-monopole, and in the g → 0 limit, γ123 agrees
with that case as well. As noted below Eq. (31), H123 = ∂θH (with curved space indices),
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so if Eq. (32) is valid the dilaton should be eΦ = H(r, θ) just as for the H-monopole. This
would lead to a throat behavior at a particular value of θ, which we expect to persist even
for finite g.

B. Conclusions and open questions

While the Kaluza-Klein monopole geometry is well known, its familiar form does not
correspond to the full solution in string theory. The usual form is “smeared” in winding
space, and worldsheet instanton effects lead to its localization there. The corrections involved
are very similar to those that localize the smeared H-monopole, but they explicitly depend
on the Kaluza-Klein monopole’s dyonic coordinate rather than the geometrical coordinate
on the circle.

This work leaves a number of interesting questions unanswered. Perhaps the most basic
of these is the exact form of the corrected geometry itself: our calculation was carried out
in the strict g → 0 limit and only to leading order in 1/r. A better understanding of
supergravity when string winding states are light could be a helpful step in that direction,
and would have importance in its own right.

Another natural extension of this work is to look for similar corrections to other objects
in the duality web. Kaluza-Klein monopoles also appear in M-theory, and this work would
seem to suggest that those solutions receive similar corrections from membrane instantons.
It could also be instructive to study the case of higher monopole charge: true throat behavior
does not emerge in the H-monopole until the charge is greater than one, and the same is
presumably true for Kaluza-Klein monopoles as well.

Finally, it remains clear that the winding space coordinate θ appears in the action in
a fundamentally different way than the geometrical coordinate κ. While differences are
certainly expected, it is odd to find that the action does not appear to specify the dynamics
of θ at all. It would be valuable to develop a more symmetric description of geometrical
coordinates and their duals. Such a formalism could be important in finding an appropriately
generalized supergravity theory as well.
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